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ABSTRACT 

There has been growing need to characterize the fluid flow through a simplified model. This paper reports the 

”random walk model” for characterization of fluid flow through the use of ‘boundary layers by discrete vortex modeling’ 

The soil erosion is considered as a case study. The research work covered three distinct regions of fluid flow namely the 

laminar region, the transition region and the turbulent region. Appropriate flow charts and FORTRAN source codes were 

developed to solve relevant fluid flow governing equations. Reynolds number which is the control parameter from 10,000 

at an interval of 10,000 to 1,000,000 is used as the control parameter to tune from laminar to turbulent flow and the result 

is displayed using Microsoft Excel Graph. The first region characterizes laminar region with regularity, stability, high 

momentum diffusion and low momentum convection. The second region is the transition region, which shows the onset of 

irregularity and instability. After several stages of transition process due to Helmholtz instability, the turbulent region is 

reached which is characterized by irregularity, instability, low momentum diffusion, high momentum convection and rapid 

variation of velocity. The result shows that fluid flow can be characterized through the use of discrete vortex modeling. 

KEYWORDS: Discrete Vortex Modeling, Distinct Regions, Fluid Flow, Momentum Convection, Momentum Diffusion, 

Regularity, Reynolds Number, Soil Erosion, Stability 

INTRODUCTION 

 A random walk is formalization in Mathematics, Computer Science and Physics of the intuitive ideas of taking 

successive steps, each in a random direction. The simplest random walk considers a walker that takes steps of length L to 

the left or right along a line while more complex random walks include fancies consideration such as given each step 

velocity and allowing the random walker to pause for random amount of time in between the steps.  

 Ojoawo (2007) investigated random walker in three dimensional Euclidean space. The random method to model 

the diffusion of vorticity was first proposed by Chorin(1978). In order to simulate the diffusion of vorticity in vortex flow, 

the positions of the vortices are given random displacements (Chorin and Marsden, 1990). The basic idea of the random 

walk method as applied to fluid flow is that the random displacements spread out the vorticity. Several studies investigated 

the theoretical and numerical aspect of the random walk method. Marchiora and Pulvienti (1982), Goodman (1987) and 

Long (1988) have shown that for flow in free space, the random walk solution converges to that of the Navier-Stokes 

equations as the number of vortices is increased, Cheer (1989) has applied the random walk method to flows over a 

cylinder. Lewis (1990) has used the random walk method for flow over airflow cascade while Chui (1993) used the 

random walk method to study thermal boundary layers. Adegbola and Ajide (2012) have implemented the random walk 

method to characterized the turbulent flow in two dimensions. The random walk method has several advantages. It is 

simple to use and it can easily handle flows around complicated boundaries. The method also conserves the total 

circulation. This is in application to inviscid flows. 
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 The soil erosion considered is the detachment of materials from the bed or sides of a channel. The water flowing 

through stream performs three types of geologic work. Moving water erodes materials from the bed or side of the channel 

and transports the eroded material to a new location and deposits it. After the material has been detached from the channel, 

it can be transported. The two different types of real fluid flow are laminar flow and turbulent flow. The laminar flow is a 

flow over a smooth surface with vorticity that appear highly ordered while turbulent flow is a flow regime characterized by 

chaotic, disordered and stotastic changes. The Reynolds number governs laminar-turbulent transition. It also characterizes 

whether the flow conditions lead to laminar or turbulent flow. Transition to turbulent can occur over a range of Reynolds 

numbers depending on many factors such as surface roughness, heat transfer, vibration, noise and other disturbances. The 

objective of this work is to develop a simplified model to characterize the fluid flow through the use of discrete vortex 

modelling. The study intends to explore the distinguishing features of the distinct regions in fluid flow through the use of 

random walk model.  

The problems of erosion in farmland cannot be overstressed. It is great challenge in agricultural industries. The 

research project is significant to the advancement of Science and Engineering. It is justified for the following reasons:  

 The random walk model can be used to analyze flows in floods.  

 The discrete vortex modelling is a simplified model that can help in analysis of farmland erosion and hence aid 

enhanced food production.  

The paper reports a ”random walk model” for characterization of fluid flow through the use of ‘boundary layers 

by discrete vortex modeling’ The research work is expected to cover the three distinct regions namely laminar, transition 

and turbulent.  

MODEL FORMULATION  

The first practical scheme for simulation of a boundary layer by discrete vortices was proposed by Chorin (1978) 

based on his earlier conception of the random walk model for high Reynolds number bluff body wake flows. The boundary 

layer flow can be approximated by placing at appropriate location some vortices in a parallel flow. This forms the basis of 

the vortex element method.  

The motion of a diffusing vortex of initial vorticity strength (Γ) entered on the origin of the (r,Ө,)  is described by 

the diffusion equation from which we may obtain the well known solution for subsequent vorticity w(r,t) in space and time.  
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Vorticity strength is a function of radius r and time t. For a vortex of unit strength split into N elements. Let us 

assume that n vortex elements are scattered into the small area r∆θ∆ф∆r after time t, the total amount of vorticity Pv in this 
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Where π is the ratio of the circumference of a circle to its diameter and υ is the kinematic viscosity. An 

appropriate strategy is to displace each element in the in the radial and angular directions by amounts r i, θi and фi over time 

interval 0 to t. Thus we may define  and  values independently of ri values by the equation  
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ii Q 2                                               (3) 

ii Q                                                    (4) 

Where Qi is a random number within the range 
 
0 < IQ < 1.0. The probability P that an element will be within a 

circle of radius r is given by the equation  
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vortex element equation (5) becomes  
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From which we obtain its radial random shift  
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Considering diffusion over a succession of small time increments t, the displacements of element i during time 

t will then be  

i = 2Qi                                       (8) 

i  = Qi                                                   (9) 
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Thus after the increment t, the new coordinate location (xi, yi, zi) of the n
th

 element will become  

 xi = xi  + risinicosi                                      (11) 

 yi = yi + risinicosi                                                               (12) 

 zi = zi + ricosi                                       (13) 

Where   xi = old x – coordinate of n
th

 element  

   yi = old y – coordinate of n
th

 element  

zi = old z – coordinate of n
th

 element  

The displacement from the origin is given by the equation:   
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Where x0, y0 and z0 are the origin.  
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Boundary Layers by Discrete Vortex Modeling  

Convective motion were completely ignored for the diffusion point flow which have just been considered, an 

assumption which is permissible in view of symmetry in these special cases and  justified for very low Reynolds numbers.  

Boundary layer flows on the other hand are more complex involving:  

 Externally imposed convection due to the main stream U, the significance of which is determined by the body 

scale Reynolds number   
v

UL
    

 L is the characteristic length of the particular flow.  

 Continuous creation of vorticity at the contact surface between fluid and wall, replacing the vorticity removed by 

diffusion and convection.  

Random Number Generation  

        Algorithms were developed to produce long sequences of apparently random results, which are in fact completely 

determined by a shorted initial value known as a seed. 

Application of Random Walk Method 

The application of the random walk will result in the loss of half of the newly created vorticity due to diffusion 

across the walls and therefore out of the active flow domain if vorticity is not conserved during the diffusion and 

convection processes for each time step. The single strength sheet is used through bouncing back vortices which attempt to 

cross the wall by assigning the value yi = abs (yi) 

Selection of Element Size and Time Step  

 A reasonable approach to the selection of an appropriate time ∆t is to focus attention on the average displacements 

of the discrete vortices due to convection and diffusion. The average convective displacement may be approximated by:  

tUC 
2

1
                                          (15) 

The average diffusive displacement may be approximated by: 

)2ln4( tvD                                          (16) 

To maintain equal discretisation of the fluid motion due to convection and diffusion we may equate c and D 

resulting in the expression 
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Where Re = 
v

UL
 is the plate Reynolds number 

It would also be reasonable to select surface element size s at twice c leading to  

s = Ut                           (18) 
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s = 
Re

2ln16L
                           (19) 

The required number of surface elements for satisfactory discretisation of the plate is then given by  

 M = 
s

L


                          (20) 

 M = 
2ln16
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         It is clear from this study that enforcing equal discretisation scales δC and δD for convention and diffusion will lead 

to computational difficulties at high Reynolds numbers. For example, the boundary layer considered for Re = 500, yields 

M = 45. On the other hand for a typical engineering system value of Re = 10
5
, yields roughly M = 9017, thereby imposing 

severe pressure upon computational requirements.  

The related time increment ∆t = 0.00011 would also require 10
4
 time steps to achieve one flow pass. It is thus 

clear that practical computational limitations will rule out vortex modeling for typical engineering system Reynolds 

numbers if we attempt to impose the constraint δC = δD  to the foregoing calculation. 

Some Considerations for High Reynolds Number Flows 

One way to reduce these difficulties for high Reynolds number would be to select different time steps for 

diffusion (tD) and convection (tC). Since convection now dominates the flow, it will be preferable to select the scale of 

convection displacements through 
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Where k can be set to be equal to 0.5 

The convective time step is:  
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Although it would be perfectly in order to perform both the convection and random walk processes over the same 

time step tC, a saving in computational effort could be achieved by undertaking only one random walk for every             

Nt convection step with 

 Dt =Nt Ct                                                   (25) 

The upper limit of Nt obtained from equating the scales δC and δDN
t
 is  

Nt =   kRe        

         8Mln2                                                   (26) 
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SIMULATION  

 The governing equation is developed for the fluid flow. The Reynolds number served as the control parameter that 

governed the laminar-turbulent transition. This is followed by the formulation of algorithms for the model, which is 

illustrated by the flow chart. The flow chart is used in writing the FORTRAN–90 program. The program is then run to 

generate desire output. The result obtained was used to plot the graphs through Microsoft Excel. 

RESULTS AND DISCUSSIONS   

 Table 1 shows the result of Reynolds number and time increment. It also shows the number of time steps, number 

of elements, and log of average distance against log of time steps. The index is the slope obtained from the graph of log of 

average distance against log of time steps. The time increment decreases with increase in Reynolds number. The Reynolds 

number increases with increase in the number of time steps and number of elements or trials. Initially, the Reynolds 

number increases with the index, but from the Reynolds number of 70,000 there is onset of fluctuation in index. 

Table 1: Characterization of Fluid Flow 

Reynolds 

Number 

(Re) 

Time 

Increment 

(t) 

Number of 

Time Steps 

(N) 

Number of 

Elements or 

Trials (M) 

Log of Average Distance 

Against Log of Time Steps 

(y=mx+c) 

Index (m) 

10,000 0.11090 9 9 y = 0.5865 x + 0.2821 0.5865 

20,000 0.05545 18 18 y = 0.7218 x + 0.2165 0.7218 

30,000 0.03697 27 27 y = 0.8182 x + 0.1355 0.8182 

40,000 0.02773 36 36 y =0.8243 x + 0.1274 0.8243 

50,000 0.02218 45 45 y = 0.8266 x + 0.1647 0.8266 

60,000 0.01848 54 54 y = 0.8281 x + 0.1517 0.8281 

70,000 0.01584 63 63 y = 0.8558 x + 0.1131 0.8558 

80,000 0.01386 72 72 y = 0.8817 x + 0.9490 0.8817 

90,000 0.01232 81 81 y = 0.875 x + 0.1003 0.875 

100,000 0.01109 90 90 y = 0.8908 x + 0.0874 0.8908 

110,000 0.01008 99 99 y = 0.8859 x + 0.0230 0.8859 

120,000 0.00924 108 108 y = 0.8806 x + 0.0929 0.8806 

130,000 0.00853 117 117 y = 0.8906 x + 0.0863 0.8906 

140,000 0.00792 126 126 y = 0.8953 x + 0.0713 0.8953 

150,000 0.00739 135 135 y = 0.8948 x + 0.0780 0.8948 

160,000 0.00693 144 144 y = 0.0919 x + 0.0722 0.919 

170,000 0.00652 153 153 y = 0.9125 x + 0.052 0.9125 

180,000 0.00616 162 162 y = 0.9087 x + 0.0561 0.9087 

190,000 0.00584 171 171 y = 0.921 x + 0.0361 0.921 

200,000 0.00555 180 180 y = 0.9232 x + 0.0317 0.9232 

210,000 0.00528 189 189 y = 0.9170 x + 0.0456 0.9170 

220,000 0.00504 198 198 y = 0.9236 x + 0.0346 0.9236 

230,000 0.00482 207 207 y = 0.9250 x + 0.0311 0.9250 

240,000 0.00462 216 216 y = 0.9193 x + 0.0450 0.9193 

250,000 0.00444 225 225 y = 0.9220 x + 0.0468 0.9220 

260,000 0.00427 234 234 y = 0.9268 x + 0.0361 0.9268 

270,000 0.00411 243 243 y = 0.9293 x + 0.0295 0.9293 

280,000 0.00396 252 252 y = 0.9367 x + 0.0118 0.9367 

290,000 0.00382 261 261 y = 0.933 x + 0.0238 0.933 

300,000 0.00370 271 271 y = 0.9338 x + 0.0208 0.9338 

310,000 0.00358 280 280 y = 0.9295 x + 0.0353 0.9295 

320,000 0.00347 289 289 y = 0.9375 x + 0.0158 0.9375 

330,000 0.00336 298 298 y = 0.9329 x + 0.0264 0.9329 

340,000 0.00326 307 307 y = 0.9357 x + 0.0217 0.9357 

350,000 0.00317 316 316 y = 0.9373 x + 0.0172 0.9373 

360,000 0.00308 325 325 y = 0.9368x + 0.0192 0.9368 
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Table 1: Contd., 

370,000 0.00300 334 334 y = 0.9413 x + 0.0107 0.9413 

380,000 0.00292 343 343 y = 0.9454 x + 0.0035 0.9454 

390,000 0.00284 352 352 y = 0.9406 x + 0.0136 0.9406 

400,000 0.00277 361 361 y = 0.9445 x + 0.005 0.9445 

410,000 0.00270 370 370 y = 0.9450 x + 0.002 0.9450 

420,000 0.00264 379 379 y = 0.9450 x + 0.0032 0.9470 

430,000 0.00258 388 388 y = 0.9470 x - 0.0003 0.9470 

440,000 0.00252 397 397 y =0.9457 x + 0.0038 0.9457 

450,000 0.00246 406 406 y = 0.9548 x – 0.0173 0.9548 

460,000 0.00241 415 415 y = 0.9479 x – 0.0008 0.9479 

470,000 0.00236 424 424 y = 0.9470 x + 0.0001 0.9470 

480,000 0.00231 433 433 y = 0.9539 x – 0.0129 0.9539 

490,000 0.00226 441 441 y = 0.9495 x – 0.0028 0.9495 

500,000 0.00222 451 451 y = 0.9525 x – 0.0095 0.9525 

510,000 0.00217 460 460 y = 0.954 x – 0.0134 0.954 

520,000 0.00213 469 469 y = 0.9531 x – 0.0109 0.9531 

530,000 0.00209 478 478 y = 0.9534 x – 0.0110 0.9534 

540,000 0.00205 487 487 y = 0.9551 x – 0.0050 0.9551 

550,000 0.00202 496 496 y = 0.9524 x – 0.0070 0.9524 

560,000 0.00198 505 505 y = 0.9570 x – 0.0179 0.9570 

570,000 0.00195 514 514 y = 0.9541 x – 0.0117 0.9541 

580,000 0.00191 523 523 y = 0.9538 x – 0.0095 0.9538 

590,000 0.00188 532 532 y = 0.9574 x – 0.0199 0.9574 

600000 0.00185 541 541 y = 0.9569 x – 0.0168 0.9569 

610,000 0.00182 550 550 y = 0.9578 x – 0.0194 0.9578 

620,000 0.00179 559 559 y = 0.9587 x – 0.0212 0.9587 

630,000 0.00176 568 568 y = 0.9593 x – 0.0230 0.9593 

640,000 0.00173 577 577 y = 0.9620 x – 0.0029 0.9620 

650,000 0.00171 586 586 y = 0.9582 x – 0.0180 0.9582 

660,000 0.00168 595 595 y = 0.9572 x – 0.0161 0.9572 

670,000 0.00166 604 604 y = 0.9595 x – 0.0235 0.9595 

680,000 0.00163 613 613 y = 0.9589 x – 0.0203 0.9589 

690,000 0.00161 622 622 y = 0.9618 x – 0.0277 0.9618 

700,000 0.00158 631 631 y = 0.9599 x – 0.0242 0.9599 

710,000 0.00156 640 640 y = 0.9586 x – 0.0194 0.9586 

720,000 0.00154 649 649 y = 0.9628 x – 0.03 0.9628 

730,000 0.00152 658 658 y = 0.9604 x – 0.0224 0.9604 

740,000 0.00150 667 667 y = 0.9600 x – 0.0212 0.9600 

750,000 0.00148 676 676 y = 0.9625 x – 0.0273 0.9625 

760,000 0.00146 685 685 y = 0.9612 x – 0.0235 0.9612 

770,000 0.00144 614 614 y = 0.9652 x – 0.0357 0.9652 

780,000 0.00142 703 703 y = 0.9624 x – 0.0268 0.9624 

790,000 0.00140 712 712 y = 0.9627 x – 0.0274 0.9627 

800,000 0.00139 721 721 y = 0.9625 x – 0.0275 0.9625 

810,000 0.00137 730 730 y = 0.9630 x – 0.028 0.9630 

820,000 0.00135 739 739 y = 0.9650 x – 0.0333 0.9650 

830,000 0.00134 748 748 y = 0.9611 x – 0.0226 0.9611 

840,000 0.00132 757 757 y = 0.9625 x – 0.0251 0.9625 

850,000 0.00130 766 766 y = 0.9637 x – 0.0298 0.9637 

860,000 0.00129 775 775 y = 0.9649 x – 0.0321 0.9649 

870,000 0.00127 784 784 y = 0.9634 x – 0.0274 0.9634 

880,000 0.00126 793 793 y = 0.9658 x – 0.0348 0.9658 

890,000 0.00125 802 802 y = 0.9642 x – 0.0302 0.9642 

900,000 0.00123 812 812 y = 0.9653 x – 0.0323 0.9653 

910,000 0.00122 821 821 y = 0.9644 x – 0.03 0.9644 

920,000 0.00121 830 830 y = 0.9632 x – 0.0268 0.9632 

930,000 0.00119 839 839 y = 0.9681 x – 0.0402 0.9681 

940,000 0.00118 848 848 y = 0.9684 x – 0.0398 0.9684 
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Table 1: Contd., 

950,000 0.00117 857 857 y = 0.9672 x – 0.0371 0.9672 

960,000 0.00116 866 866 y = 0.9688 x – 0.0415 0.9688 

970,000 0.00114 875 875 y = 0.9666 x – 0.035 0.9666 

980,000 0.00113 884 884 y = 0.9694 x – 0.0417 0.9694 

990,000 0.00112 893 893 y = 0.9697 x – 0.0432 0.9697 

1000000 0.00111 902 902 y = 0.9696 x – 0.0428 0.9696 

 

         The characterizing parameters are the index and Reynolds number. The graph of Index and Reynolds number 

displayed three distinct regions (figure 2) The concept of critical Reynolds number proves quite useful in demarcating the 

regimes of laminar and turbulent flows. The lower limit of critical Reynolds (Re)cr exists and its value is approximately 

70,000. The upper limit of critical value of (Re)cr which characterizes full attainment of transition lie between 90,000 and 

310,000. The lower critical Reynolds number is of greater engineering importance as it defines the limit below which all 

turbulence, no matter how severe, entering the flow from any source will eventually be damped out by viscous action.  

The first region characterizes laminar region with regularity, stability, straight-line segment, high momentum 

diffusion and low momentum convection. (figure 3) In this region, the Reynolds number is less than 70,000.The second 

region is the transition region which is in form of way-line segments (figure 4)  There is onset of instability or waviness 

(moving to and fro or up and down of lines in series).  

This region is from Reynolds number of 70,000 to 310,000. The third region is the turbulent region in which 

higher wavy-line segments are shown (figure 5) The transition of a boundary layer form laminar to turbulent motion takes 

place at very high Reynolds number due to Kelvin-Helmholtz instability. The region starts from Reynolds number of 

320,000. It is characterized by irregularity, instability, low momentum diffusion, high momentum convection and rapid 

variation of velocity.  

CONCLUSIONS  

 The study has explored the use of random walk model to characterize the fluid flow (soil erosion). The index 

number increases with increase in Reynolds number. Rate of increase of index number is highest in the laminar region and 

smallest in turbulent region. The laminar region is characterized by regularity, stability, high momentum diffusion and low 

momentum convection. There is onset of instability at the transition region while turbulent region is characterized by 

irregularity, instability, low momentum diffusion, high momentum convection and rapid variation of velocity. 
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